445 research outputs found

    Is the Coulomb sum rule violated in nuclei?

    Get PDF
    Guided by the experimental confirmation of the validity of the Effective Momentum Approximation (EMA) in quasi-elastic scattering off nuclei, we have re-examined the extraction of the longitudinal and transverse response functions in medium-weight and heavy nuclei. In the EMA we have performed a Rosenbluth separation of the available world data on 40^{40}Ca, 48^{48}Ca, 56^{56}Fe, 197^{197}Au, 208^{208}Pb and 238^{238}U. We find that the longitudinal response function for these nuclei is "quenched" and that the Coulomb sum is not saturated, at odds with claims in the literature.Comment: 10 pages, 6 figure

    Approximate treatment of electron Coulomb distortion in quasielastic (e,e') reactions

    Full text link
    In this paper we address the adequacy of various approximate methods of including Coulomb distortion effects in (e,e') reactions by comparing to an exact treatment using Dirac-Coulomb distorted waves. In particular, we examine approximate methods and analyses of (e,e') reactions developed by Traini et al. using a high energy approximation of the distorted waves and phase shifts due to Lenz and Rosenfelder. This approximation has been used in the separation of longitudinal and transverse structure functions in a number of (e,e') experiments including the newly published 208Pb(e,e') data from Saclay. We find that the assumptions used by Traini and others are not valid for typical (e,e') experiments on medium and heavy nuclei, and hence the extracted structure functions based on this formalism are not reliable. We describe an improved approximation which is also based on the high energy approximation of Lenz and Rosenfelder and the analyses of Knoll and compare our results to the Saclay data. At each step of our analyses we compare our approximate results to the exact distorted wave results and can therefore quantify the errors made by our approximations. We find that for light nuclei, we can get an excellent treatment of Coulomb distortion effects on (e,e') reactions just by using a good approximation to the distorted waves, but for medium and heavy nuclei simple additional ad hoc factors need to be included. We describe an explicit procedure for using our approximate analyses to extract so-called longitudinal and transverse structure functions from (e,e') reactions in the quasielastic region.Comment: 30 pages, 8 figures, 16 reference

    Charge radii of the nucleon from its flavor dependent Dirac form factors

    Full text link
    We have determined the proton and the neutron charge radii from a global analysis of the proton and the neutron elastic form factors, after first performing a flavor decomposition of these form factors under charge symmetry in the light cone frame formulation. We then extracted the transverse mean-square radii of the flavor dependent quark distributions. In turn, these are related in a model-independent way to the proton and neutron charge radii but allow us to take into account motion effects of the recoiling nucleon for data at finite but high momentum transfer. In the proton case we find rp=0.852±0.002(stat.)±0.009(syst.) (fm)\langle r_p \rangle = 0.852 \pm0.002_{\rm (stat.)} \pm0.009_{\rm (syst.)}~({\rm fm}), consistent with the proton charge radius obtained from muonic hydrogen spectroscopy \cite{pohl:2010,antog2013}. The current method improves on the precision of the rp\langle r_p \rangle extraction based on the form factor measurements. Furthermore, we find no discrepancy in the rp\langle r_p \rangle determination among the different electron scattering measurements, all of which, utilizing the current method of extraction, result in a value that is consistent with the smallest rp\langle r_p \rangle extraction from the electron scattering measurements \cite{Xiong:2019umf}. Concerning the neutron case, past results relied solely on the neutron-electron scattering length measurements, which suffer from an underestimation of underlying systematic uncertainties inherent to the extraction technique. Utilizing the present method we have performed the first extraction of the neutron charge radius based on nucleon form factor data, and we find rn2=0.122±0.004(stat.)±0.010(syst.) (fm2)\langle r_n^2 \rangle = -0.122 \pm0.004_{\rm (stat.)} \pm0.010_{\rm (syst.)}~({\rm fm}^2)

    Inelastic nucleon contributions in (e,e)(e,e^\prime) nuclear response functions

    Full text link
    We estimate the contribution of inelastic nucleon excitations to the (e,e)(e,e^\prime) inclusive cross section in the CEBAF kinematic range. Calculations are based upon parameterizations of the nucleon structure functions measured at SLAC. Nuclear binding effects are included in a vector-scalar field theory, and are assumed have a minimal effect on the nucleon excitation spectrum. We find that for q\lsim 1 GeV the elastic and inelastic nucleon contributions to the nuclear response functions are comparable, and can be separated, but with roughly a factor of two uncertainty in the latter from the extrapolation from data. In contrast, for q\rsim 2 GeV this uncertainty is greatly reduced but the elastic nucleon contribution is heavily dominated by the inelastic nucleon background.Comment: 20 pages, 7 figures available from the authors at Department of Physics and Astronomy, University of Rochester, Rochester NY 1462

    Eikonal analysis of Coulomb distortion in quasi-elastic electron scattering

    Full text link
    An eikonal expansion is used to provide systematic corrections to the eikonal approximation through order 1/k21/k^2, where kk is the wave number. Electron wave functions are obtained for the Dirac equation with a Coulomb potential. They are used to investigate distorted-wave matrix elements for quasi-elastic electron scattering from a nucleus. A form of effective-momentum approximation is obtained using trajectory-dependent eikonal phases and focusing factors. Fixing the Coulomb distortion effects at the center of the nucleus, the often-used ema approximation is recovered. Comparisons of these approximations are made with full calculations using the electron eikonal wave functions. The ema results are found to agree well with the full calculations.Comment: 12 pages, 6 Postscript figure

    Sum Rules and Moments of the Nucleon Spin Structure Functions

    Full text link
    The nucleon has been used as a laboratory to investigate its own spin structure and Quantum Chromodynamics. New experimental data on nucleon spin structure at low to intermediate momentum transfers combined with existing high momentum transfer data offer a comprehensive picture of the transition region from the {\it confinement} regime of the theory to its {\it asymptotic freedom} regime. Insight for some aspects of the theory is gained by exploring lower moments of spin structure functions and their corresponding sum rules (i.e. the Gerasimov-Drell-Hearn, Bjorken and Burkhardt-Cottingham). These moments are expressed in terms of an operator product expansion using quark and gluon degrees of freedom at moderately large momentum transfers. The sum rules are verified to a good accuracy assuming that no singular behavior of the structure functions is present at very high excitation energies. The higher twist contributions have been examined through the moments evolution as the moments evolution as the momentum transfer varies from higher to lower values. Furthermore, QCD-inspired low-energy effective theories, which explicitly include chiral symmetry breaking, are tested at low momentum transfers. The validity of these theories is further examined as the momentum transfer increases to moderate values. It is found that chiral perturbation calculations agree reasonably well with the first moment of the spin structure function g1g_1 at momentum transfer of 0.1 GeV2^2 but fail to reproduce the neutron data in the case of the generalized polarizability δLT\delta_{LT}.Comment: 21 pages, 4 figures, review for Modern Physics Letters A. Minor modifications in text and improved quality for one figure. Corrected mistakes in section

    y scaling in electron-nucleus scattering

    Get PDF
    Data on inclusive electron scattering from A = 4, 12, 27, 56, 197 nuclei at large momentum transfer are presented and analyzed in terms of y scaling. We find that the data do scale for y 1), and we study the convergence of the scaling function with the momentum transfer Q^2 and A

    Density effect in Cu K-shell ionization by 5.1-GeV electrons

    Get PDF
    We have made an absolute measurement of the Cu K-shell impact ionization cross section by 5.1-GeV electrons, which demonstrates directly a density effect predicted by Fermi in 1940. By determining the ratio of the K x-ray yield from a thin front and back layer of the target by a novel grazing emission method, we have verified the effect of transition radiation on the x-ray production, suggested by Sorensen and reported by Bak et al
    corecore